On Spherical Designs of Some Harmonic Indices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Spherical Designs of Some Harmonic Indices

A finite subset Y on the unit sphere Sn−1 ⊆ Rn is called a spherical design of harmonic index t, if the following condition is satisfied: ∑ x∈Y f(x) = 0 for all real homogeneous harmonic polynomials f(x1, . . . , xn) of degree t. Also, for a subset T of N = {1, 2, · · · }, a finite subset Y ⊆ Sn−1 is called a spherical design of harmonic index T, if ∑ x∈Y f(x) = 0 is satisfied for all real homo...

متن کامل

On Tight Spherical Designs

Let X be a tight t-design of dimension n for one of the open cases t = 5 or t = 7. An investigation of the lattice generated by X using arithmetic theory of quadratic forms allows to exclude infinitely many values for n.

متن کامل

Robust Designs for 3d Shape Analysis with Spherical Harmonic Descriptors

Spherical harmonic descriptors are frequently used for describing threedimensional shapes in terms of Fourier coefficients corresponding to an expansion of a function defined on the unit sphere. In a recent paper Dette, Melas and Pepelysheff (2005) determined optimal designs with respect to Kiefer’s Φp-criteria for regression models derived from a truncated Fourier series. In particular it was ...

متن کامل

Extremal Spherical Designs on S

A spherical t-design is a system of m points on the unit sphere S ⊂ R such that the equal weight cubature rule (|S2|/m) mj=1 f(xj) gives ∫ S2 f(x)dx for all polynomials f of degree at most t. Typically the interest is in finding spherical t-designs with the smallest number of points. Goethals and Seidel proved a lower bound m ≥ t/4 + O(t), which is not achievable for t ≥ 3. Upper bounds of m = ...

متن کامل

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2017

ISSN: 1077-8926

DOI: 10.37236/6437